
Pascal Wittmann
TU Darmstadt
pascal.wittmann@stud.tu-darmstadt.de

Sebastian Erdweg
TU Darmstadt
erdweg@informatik.tu-darmstadt.de

A Language for the Specification and
Efficient Implementation of Type Systems

Int = Int
========== R1
Int <: Int

~A -> ~B = Int
=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3
Int <: ~C -> ~D

~A -> ~B = ~C -> ~D
==================== R4
~A -> ~B <: ~C -> ~D

The Approach
We generate from the typing rules of a type
system specification a set of normalized
templates. Templates are an intermediate
representation of typing rules, which have no
implicit equalities and declare dependencies
between premises explicitly.
In the next step the generated templates are
optimized and ambiguities between
templates are made explicit.

============== T-int
$C |- &i : int

%x : ~T in $C
============== T-var
$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
================================== T-abs
$C |- \ %x : ~T1 . ~e : ~T1 -> ~T2

~S = ~T
======== S-refl
~S <: ~T

~T1 <: ~S1
~S2 <: ~T2
======================== S-arrow
~S1 -> ~S2 <: ~T1 -> ~T2

============== T-int
$C |- &i : int

%x : ~T in $C
============== T-var
$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
================================== T-abs
$C |- \ %x : ~T1 . ~e : ~T1 -> ~T2

========== S-refl
Int <: Int

~T1 <: ~S1
~S2 <: ~T2
======================== S-arrow
~S1 -> ~S2 <: ~T1 -> ~T2

$C |- ~e1 : ~T11 -> ~T12
$C |- ~e2 : ~T2
========================= T-app
$C |- ~e1 ~e2 : ~T12

$C |- ~e1 : ~T11 -> ~T12
$C |- ~e2 : ~T2
~T2 <: ~T11
========================= T-app
$C |- ~e1 ~e2 : ~T12

$C |- ~t : ~S
~S <: ~T
============== T-sub
$C |- ~t : ~T

Intuitive formalization of the simply typed lambda calculus with subtyping

Typing rules T-sub and S-refl
 are not syntax directed

and thus require backtracking

Unfolding of not syntax directed typing rules

Algorithmic version of the type system

Removal of typing rules with unsatisfiable premises

Int = Int
========== R1
Int <: Int

Removal of valid premises

========== R1
Int <: Int

Removal of subsumed typing rules

Int = Int
========== R1
Int <: Int

~A -> ~B = Int
=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3
Int <: ~C -> ~D

A valid premise is satisfied for all
possible configurations, therefore
we do not have to check if it is
satisfiable during type checking
and can safely remove the valid
premise from the typing rule.

To apply a typing rule all
premises have to be satisfied,
therefore typing rules with
unsatisfiable premises cannot
be applied and safely removed.

We unfold not syntax directed rules by
substituting the variables for all possible
substructures to create syntax directed
instances of those rules.

The unfolding of rule S-refl with the types Int and Type -> Type:

Unfolding rules may create ambiguities
between typing rules. We attempt to
eliminate those ambiguities by proving that
one typing rule is subsumed by another.
Subsumed typing rules are redundant and
can be removed safely.

Remaining typing rules of the unfolding:In the unfolding of S-refl the conclusions
of typing rules R4 and S-arrow match
exactly the same terms. We prove the
following lemma by structural induction
a -> b = c -> d c <: a b <: d⇒ ∧
to show that R4 is subsumed by S-arrow.

We have developed a modular, declarative
and high-level specification language for
type systems. It facilitates the specification
of type systems close to text books by
custom context and judgment definitions.
Typing rules can be annotated with custom
error messages to produce user friendly
messages in case a program is ill-typed.
Type systems are specified based on SDF
syntax defintions of programming languages.

Remaining typing rules of the unfolding: Remaining typing rules of the unfolding:

The optimized templates are the input for a
generic type checker. The generic type
checker is constraint based and has clearly
separated constraint generation and
constraint solving phases.
Custom errors that are thrown during
constraint generation and constraint solving
are collected and shown after type checking,
in case of ill-typed programs.

Type system specifications are used to
create a first-order formula representation
and a type checker. The first-order formula
representation is used to validate the
applicability of optimizations for typing rules.
The applicability is validated by proving
corresponding theorems using automated
theorem provers. The goal is to automatically
transform type system specifications so that
no backtracking is needed in the type
checker.

Template Generation Template Optimization

Constraint GenerationConstraint Solving

Specification

Templates

Extended Templates

Program
Constraints

Type System Specification

First-order Formulas Type Checker

used to validate
 applicability of optimizations

Generation Generation

 Motivating Example

No backtracking needed

Next step: Automate
 optimization of T-sub

