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Int = Int
========== R1
Int <: Int

~A -> ~B = Int
=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3
Int <: ~C -> ~D

~A -> ~B = ~C -> ~D
==================== R4
~A -> ~B <: ~C -> ~D

The Approach
We generate from the typing rules of a type 
system specification a set of normalized 
templates. Templates are an intermediate 
representation of typing rules, which have no 
implicit equalities and declare dependencies 
between premises explicitly.
In the next step the generated templates are 
optimized and ambiguities between 
templates are made explicit.

============== T-int
$C |- &i : int

%x : ~T in $C
============== T-var
$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
================================== T-abs
$C |- \ %x : ~T1 . ~e : ~T1 -> ~T2

~S = ~T
======== S-refl
~S <: ~T

~T1 <: ~S1
~S2 <: ~T2    
======================== S-arrow 
~S1 -> ~S2 <: ~T1 -> ~T2

============== T-int
$C |- &i : int

%x : ~T in $C
============== T-var
$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
================================== T-abs
$C |- \ %x : ~T1 . ~e : ~T1 -> ~T2

========== S-refl
Int <: Int

~T1 <: ~S1
~S2 <: ~T2    
======================== S-arrow 
~S1 -> ~S2 <: ~T1 -> ~T2

$C |- ~e1 : ~T11 -> ~T12
$C |- ~e2 : ~T2
========================= T-app
$C |- ~e1 ~e2 : ~T12

$C |- ~e1 : ~T11 -> ~T12
$C |- ~e2 : ~T2
~T2 <: ~T11
========================= T-app
$C |- ~e1 ~e2 : ~T12

$C |- ~t : ~S
~S <: ~T
============== T-sub
$C |- ~t : ~T

Intuitive formalization of the simply typed lambda calculus with subtyping

Typing rules T-sub and S-refl
 are not syntax directed

and thus require backtracking

Unfolding of not syntax directed typing rules

Algorithmic version of the type system

Removal of typing rules with unsatisfiable premises

Int = Int
========== R1
Int <: Int

Removal of valid premises

========== R1
Int <: Int

Removal of subsumed typing rules

Int = Int
========== R1
Int <: Int

~A -> ~B = Int
=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3
Int <: ~C -> ~D

A valid premise is satisfied for all 
possible configurations, therefore 
we do not have to check if it is 
satisfiable during type checking 
and can safely remove the valid 
premise from the typing rule.

To apply a typing rule all 
premises have to be satisfied, 
therefore typing rules with 
unsatisfiable premises cannot 
be applied and safely removed.

We unfold not syntax directed rules by 
substituting the variables for all possible 
substructures to create syntax directed 
instances of those rules.

The unfolding of rule S-refl with the types Int and Type -> Type:

Unfolding rules may create ambiguities 
between typing rules. We attempt to 
eliminate those ambiguities by proving that 
one typing rule is subsumed by another. 
Subsumed typing rules are redundant and 
can be removed safely.

Remaining typing rules of the unfolding:In the unfolding of S-refl the conclusions 
of typing rules R4 and S-arrow match 
exactly the same terms. We prove the 
following lemma by structural induction
a -> b = c -> d  c <: a  b <: d⇒ ∧
to show that R4 is subsumed by S-arrow.

We have developed a modular, declarative 
and high-level specification language for 
type systems. It facilitates the specification 
of type systems close to text books by 
custom context and judgment definitions.
Typing rules can be annotated with custom 
error messages to produce user friendly 
messages in case a program is ill-typed.
Type systems are specified based on SDF 
syntax defintions of programming languages.

Remaining typing rules of the unfolding: Remaining typing rules of the unfolding:

The optimized templates are the input for a 
generic type checker. The generic type 
checker is constraint based and has clearly 
separated constraint generation and 
constraint solving phases.
Custom errors that are thrown during 
constraint generation and constraint solving 
are collected and shown after type checking, 
in case of ill-typed programs.

Type system specifications are used to 
create a first-order formula representation 
and a type checker. The first-order formula 
representation is used to validate the 
applicability of optimizations for typing rules.
The applicability is validated by proving 
corresponding theorems using automated 
theorem provers. The goal is to automatically 
transform type system specifications so that 
no backtracking is needed in the type 
checker.
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No backtracking needed

Next step: Automate
 optimization of T-sub


