
A Language for the Specification and Efficient
Implementation of Type Systems

Pascal Wittmann

TU Darmstadt

October 23, 2014



Motivation

Example

Simply typed lambda calculus + Subtyping

~S = ~T
======== S-refl
~S <: ~T

~T1 <: ~S1
~S2 <: ~T2
======================== S-arrow
~S1 -> ~S2 <: ~T1 -> ~T2



Optimization Strategies

I Unfold typing rules

Int = Int ~A -> ~B = Int

========== R1 =============== R2

Int <: Int ~A -> ~B <: Int

Int = ~C -> ~D ~A -> ~B = ~C -> ~D
=============== R3 ==================== R4

Int <: ~C -> ~D ~A -> ~B <: ~C -> ~D

I Remove typing rules that are subsumed by other typing rules

~A -> ~B = ~C -> ~D =⇒ (~T1 <:~S1 ∧ ~S2 <:~T2)

(~T1 <:~S1 ∧ ~S2 <:~T2) =⇒ ~A -> ~B = ~C -> ~D



Optimization Strategies

I Unfold typing rules

Int = Int ~A -> ~B = Int

========== R1 =============== R2

Int <: Int ~A -> ~B <: Int

Int = ~C -> ~D ~A -> ~B = ~C -> ~D
=============== R3 ==================== R4

Int <: ~C -> ~D ~A -> ~B <: ~C -> ~D

I Remove typing rules that are subsumed by other typing rules

~A -> ~B = ~C -> ~D =⇒ (~T1 <:~S1 ∧ ~S2 <:~T2)

(~T1 <:~S1 ∧ ~S2 <:~T2) =⇒ ~A -> ~B = ~C -> ~D



Optimization Strategies

I Removal of typing rules with unsatisfiable premises

~A -> ~B = Int

=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3

Int <: ~C -> ~D

I Removal of valid premises

Int = Int

========== R1

Int <: Int

I After optimizations we have the following typing rules

~T1 <: ~S1
~S2 <: ~T2

========== R1 ======================== S-arrow

Int <: Int ~S1 -> ~S2 <: ~T1 -> ~T2



Optimization Strategies

I Removal of typing rules with unsatisfiable premises

~A -> ~B = Int

=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3

Int <: ~C -> ~D

I Removal of valid premises

Int = Int

========== R1

Int <: Int

I After optimizations we have the following typing rules

~T1 <: ~S1
~S2 <: ~T2

========== R1 ======================== S-arrow

Int <: Int ~S1 -> ~S2 <: ~T1 -> ~T2



Optimization Strategies

I Removal of typing rules with unsatisfiable premises

~A -> ~B = Int

=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3

Int <: ~C -> ~D

I Removal of valid premises

Int = Int

========== R1

Int <: Int

I After optimizations we have the following typing rules

~T1 <: ~S1
~S2 <: ~T2

========== R1 ======================== S-arrow

Int <: Int ~S1 -> ~S2 <: ~T1 -> ~T2



Architecture

I Automatic translation of specifications into first-order
formulas

I Automated theorem provers are used to validate applicability
of optimizations

I Generation of a type checker from optimized specifications

Type System Specification

First-order Formulas Type Checker

Generation Generation
used to validate

applicability of optimizations



Type Checker

I Translation of typing rules in normalized templates

I Optimization of templates

I Type checking according to templates using a generic type
checker

Template Generation Template Optimization

Constraint GenerationConstraint Solving

Templates

Extended Templates

Program

Constraints

Specification



Conclusion & Future Work

I We contribute
I a declarative, high-level specification language for type system
I a translation of specifications into first-order formulas
I optimization strategies to reduce the need of backtracking in

the type checker
I a type checker generator, which generates constraint-based

type checkers

I We plan to
I develop more optimization strategies (e.g. to optimize

subsumption-like rules)
I develop heuristics and proof strategies to validate the

applicability of optimizations
I apply our work to more realistic programming languages


