
A Language for the Specification and Efficient
Implementation of Type Systems

Pascal Wittmann

December 3, 2014



Motivation

Goal: Automatically generate efficient type checkers from
high-level specifications.

I Type systems provide
I static approximation of program semantics
I means to establish and enforce abstraction barriers
I documentation in sync with source code

I Domain Specific Languages (DSL) benefit from specialized
type systems

I Gap between formal definitions of type systems and their
implementations

2 / 14



Research Problem

I Type system specifications may be have rules that overlap in
non-trivial ways

I Those overlaps require the type checker to backtrack

I Currently, type systems are transformed hand into algorithmic
type systems

I Ensuring preservation of semantics requires non-trivial proofs

How to remove overlap automatically while preserving the
semantics?

3 / 14



Optimization Strategies

Example 1

Consider a subtyping relation on types Int and Type -> Type

~T1 <: ~S1
~S = ~T ~S2 <: ~T2
======== refl ======================== arrow
~S <: ~T ~S1 -> ~S2 <: ~T1 -> ~T2

Goal: Remove the overlap between rules refl and arrow.

General idea:

I Identify problematic rules

I Derive more specific versions of problematic rules

I Remove unnecessary rules

4 / 14



Strategy I: Unfolding

I The problematic rule in this example is refl
I It is applicable to strictly more terms than trans
I It is applicable to all instances of the subtyping judgment

I Idea: Unfold the structure of the variables in the conclusion

Int = Int ~A -> ~B = Int

========== R1 =============== R2

Int <: Int ~A -> ~B <: Int

Int = ~C -> ~D ~A -> ~B = ~C -> ~D
=============== R3 ==================== R4

Int <: ~C -> ~D ~A -> ~B <: ~C -> ~D

5 / 14



Strategy II/III: Unsatisfiable & Valid Premises

I The unfolding of rules is purely syntactic
I Exploit semantics to unnecessary rules

I Remove valid premises from rules

Int = Int

========== R1

Int <: Int

I Remove rules with unsatisfiable premises

~A -> ~B = Int

=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3

Int <: ~C -> ~D

6 / 14



Strategy IV: Subsumption

Definition 1

Rule r1 subsumes r2 if they have the same conclusion (modulo
variable renaming) and the premises of rule r2 imply the
conjunction of all premisses of r1.

~C <: ~A
~A -> ~B = ~C -> ~D ~B <: ~D
==================== ====================
~A -> ~B <: ~C -> ~D ~A -> ~B <: ~C -> ~D

Is one of these rules subsumed by the other?
Conjecture: The left rule is subsumed by the right rule.

7 / 14



Strategy IV: Subsumption

I We can remove subsumed typing rules while preserving the
semantics of the type system

I Both applicable to the same terms
I The subsuming rule is applicable whenever the subsumed rule is

I Therefore we identify all subsumed rules and remove them

I Conjecture is proved by structural induction

∀a, b, c , d . (a -> b = c -> d) =⇒ (c <: a ∧ b <: d)

I One case of the induction proof

(a1->a2)->Int = (c1->c2)->Int =⇒ (c1->c2 <: a1->a2 ∧ Int <: Int)

((a1->a2) = (c1->c2) ∧ Int = Int) =⇒ (c1->c2 <: a1->a2 ∧ Int <: Int)

(a1->a2) = (c1->c2) =⇒ c1->c2 <: a1->a2

(c1->c2) = (a1->a2) =⇒ c1->c2 <: a1->a2

((a1 <: c1) ∧ (c2 <: a2)) =⇒ c1->c2 <: a1->a2

8 / 14



Implementation

I From a type system specification we generate
I first-order formulas
I a type checker

I We use automated theorem proving to prove the conjectures
seen in the optimization strategies

I Generation of a type checker form optimized specifications

I First-order formulas serve in combination with automated
theorem proving as a reference implementation

Type System Specification

First-order Formulas Type Checker

Generation Generation
used to validate

applicability of optimizations

9 / 14



Type Checker

The type checker has four phases

1. Translation of typing rules into normalized templates

2. Optimization of templates X

3. Generation of constraints according to an expression

4. Solving of the generated constraints

Template Generation Template Optimization

Constraint GenerationConstraint Solving

Templates

Extended Templates

Program

Constraints

Specification

10 / 14



Templates

I Templates are an intermediate representation of the rules
suitable for constraint generation

I Resolved dependencies between premises
I Resolved implicit equlities
I Uniform structure

I Ambiguous rules are group into Fork constructors

I Templates are ordered such that the rule with the most
general conclusion is applied last

11 / 14



Constraint Generation

I Simple constraint language consisting of
I Equality
I Inequality
I Bottom / Fail

I Algorithm

1. Find template whose conclusion matches the program fragment
2. Update contexts
3. Check if premises are satisfiable (Call 1. with correct terms)

true Collect constraints
false Use the next matching template, otherwise fail

4. return collected constraints

12 / 14



Constraint Solving

I Constraints are solved by Robinson unification

I If a constraint cannot be unified the error message is recorded

I During unification a most general unifier (mgu) is computed

I On a successful unification the mgu is applied to the output
of the constraint generation

I Otherwise the mgu is applied to the collected error messages

13 / 14



Conclusion & Future Work

I We contribute
I a declarative, high-level specification language for type systems
I a translation of specifications into first-order formulas
I optimization strategies to reduce the need of backtracking
I a type checker generator, which generates constraint-based

type checkers

I We plan to
I develop more optimization strategies (e.g. to optimize

subsumption-like rules)
I develop specialized heuristics and proof strategies
I apply our work to more realistic programming languages

14 / 14


