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Abstract
Type systems are important tools to ensure partial correctness of
programs, to establish abstractions and to guide the programmer
in the development process. However, there is currently a lack
of established tools supporting the development of type systems.
Tools like lexer and parser generators. We introduce a declarative
specification language for type systems, that allows to specify type
systems in a natural deductive style. We generate two products from
a specification: A first-order formula representation to facilitate the
use of automated theorem provers and an efficient type checker.
Both results aim to make the development cycle for type systems
faster and to narrow the gap between theory and practice.

1. Motivation
Type systems ensure partial correctness of programs. In other
words, they try to ensure that programs have meaning in the sense
of the semantics of the programming language. The type systems
we focus on are static type systems and can also be thought of as
a static approximation of the program semantics. Besides ensuring
partial correctness, type systems are means to establish abstrac-
tions, to enforce adherence to these abstractions and they can serve
as documentation. All in all type systems can help to develop soft-
ware more efficiently (cf. [5] and [3]).

Type systems are useful tools if they fit to the programming
language and the application scenario. To ensure this it makes
sense to adapt and modify existing type systems or create new
specialized type systems. Those specializations can lead to better
error messages, more expressive type systems and the detection
of more errors [9]. Currently there are, to our best knowledge,
no established tools that generate type checkers from a declarative
specification. Such generators could make the development of type
checkers faster and less error prone. Those generators would fit
well into the language development workbench besides the long
established lexer and parser generators.

The other advantage of generating a type checker from a declar-
ative specification language is that the specification is close to the
formal description of type systems in text books. Thus it is possible
to adapt results from text books to a specification and those will ap-
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ply to the generated type checker as well. Such a comparison is not
possible with traditional type system implementations. Declarative
specifications also allow to specify type systems from other areas,
like language-based security, close to their formalizations.

To have even more confidence into properties of type systems
the translation of a specification into first-order formulas can be
used to conduct proofs of these properties. As the proofs of proposi-
tions about type systems change when the type system changes, it is
desirable to make most of these changes automatically. Automated
theorem provers can try to conduct those proves automatically and
if the proof search fails one can give hints for proof search. This
establishes a direct connection between the specified type system,
the proofs and the generated type checker.

2. Research Problem
The research problem we are tackling is to create a tool that allows
to create an efficient type checker from a declarative specification
and that narrows the gap between formal reasoning about type sys-
tems and their implementations. This problem splits up in smaller
problems.

The first problem is the design of a declarative specification
language that is close to the text-book formalisms of type systems.
This language should make it easy to use existing syntax definitions
of realistic programming languages and the difference between
typing rules on paper and in the specification language should be
small.

The next problem is to create a good first-order formula repre-
sentation of specifications. This representation should be designed
such that it suits automated theorem proving and thus supports a
fast prove search. It should also be investigated to which extend
theorem provers for first order logic can be used for type checking.

The main problem is the generation of an efficient type checker.
The generated type checker should be able to cope with non-syntax
directed typing rules in an efficient manner. In this context it should
be investigated whether facts proven by an automated theorem
prover can be exploited for the type checker generation.

3. Related Work
Early approaches used to generate type checkers were not par-
ticularly designed for type checker generation. For example the
Synthesizer Generator [6] which uses attributes grammars and the
ASF+SDF Meta-Environment [10] base on conditional term rewrit-
ing. Later approaches use similar techniques, for example TCG [1]
which uses inference rules, but are specialized for the generation
of type system. Those approaches have a usually lower perfor-
mance than handcrafted implementations, because they implement
the control-flow implied by the used formalism.

A recent approach (TyC [4]) has focused on the generation
of type checkers for object-oriented programming languages. It

1 2014/7/10



module example
imports common
language simply-typed-lambda-calculus
meta-variables Term "~" { Type Exp }

Ctx "$" { Context }
Id "%" { ID }

contexts Context := ID{I} x Type{O}
judgments Context{I} "|-" Exp{I} ":" Type{O}.
rules
%x : ~T in $C
============== T-Var
$C |- %x : ~T

(%x : ~T ; $C) |- ~t : ~T
================================= T-Abs
$C |- \ %x : ~T . ~t : ~T -> ~T

$C |- ~t1 : ~T11 -> ~T12
$C |- ~t2 : ~T2
========================= T-App
$C |- ~t1 ~t2 : ~S

Figure 1. Specification of the type system for the simply typed
lambda calculus.

provides a framework to build efficient type checkers for object-
oriented languages (without polymorphism) and uses for this pur-
pose, in most parts, normal program code that implements an in-
terface to specify the type system. Thus type systems cannot be
specified declaratively with this approach.

Ott [7] is an other approach that generates from a specification
language code for proof assistants and LATEX, it tries to reduce
the gap between the hand-written on-paper proofs and machine
checkable proof. Ott focuses on reducing the boilerplate when
formalizing type systems, it does not attempt to generate a type
checker.

4. Approach
Our approach combines ideas from the related work presented
above. We design a high level declarative specification language
that is close to text-book formalizations of type systems and gener-
ate first-order formulas and efficient type checkers from it.

We use the language workbench Spoofax [2] for the implemen-
tation of the specification language and the generators.

Specifications are organized in modules and contain declara-
tions of meta-variables, contexts, judgments, rules and test-cases.
Figure 1 gives and impression of a specification for the simply
typed lambda calculus.

We transform a specification into first-order formulas in the
TPTP [8] format. The use of the TPTP format allows to use a
variaty of different automated theorem provers. Typing rules are
transformed roughly into the following format, where p1 . . . pn are
the premisses, c is the conclusion and free collects free variables:

∀v ∈ free(p1, . . . , pn, c).p1 ∧ · · · ∧ pn =⇒ c (1)

In this transformation process measurements are taken to ensure
that variables are correctly quantified and valid TPTP formulas are
generated.

The generated type checker consists of a constraint generator
and a constraint solver. We have chosen constraint solving as a
basis for the type checker, because it allows the generation of fast
type checkers and is not bound to certain class of type systems.
To obtain a fast constraint generator the structure of the rules

should be analyzed, also with the help of the formula generation
and automated reasoning. A possible approach for dealing with
non-syntax-directed rules is for instance to check whether two
rules commute, to delay to application of general rules as long as
possible.

5. Contributions
This work has three main contributions: A declarative specification
language that allows to specify arbitrary type systems close to text-
book formalizations, a tool that transforms specifications into first-
order formulas in the TPTP format, and finally a tool that generates
an efficient type checker that can cope with non-syntax-directed
rules and uses automated reasoning to optimize the resulting type
checker. This reduces the amount of work to implement type sys-
tems and reduces the gap between theory and practice.

We have working prototypes of the specification language and
the formula generation and tested those with type systems of lan-
guages like PCF and SystemF and with a type system from infor-
mation flow security. The generation of the type checker is work in
progress.
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